Noah Mifsud
Modeling Natural Phenomena
Bacteria Multi-Agent Model

Introduction

In this week’s lab we were tasked with implement and experimenting on a multi agent
model for bacteria in a petri dish. Our goal was to write a code which would move 1um wide
bacteria at a speed of 20 um/s through the dish with cyclic boundary conditions over 0.2s
timesteps. In this dish we were to simulate two different versions of a food-density field. The
bacteria, being agents with some knowledge of the world around them, would measure the
change in the food density at each timestep and decide whether to rotate or maintain a straight
path.

The first food density field is a gradient with the highest density at the center and lowest
at the edges calculated using this formula:

1
"~ 1+ norm(c-x)
Where c is the center and x the position of the bacteria. Thus P,=1/2 when the bacteria is at the
center and approaches zero when the bacteria is far away.

The second is far more rudimentary, it states: ‘if norm(c-x)<=15 the value of Py, is one,
otherwise it is zero’.

Using one of these methods for calculating the value of P at each timestep the bacteria
would decide to do one of two possible things. If P(t)>=P(t-1), meaning the bacteria was getting
closer to the food source, it would have a 90% chance of continuing its path and a 10% chance
randomly picking a new direction. If P(t)<=P(t-1) the bacteria would have only a 50% chance of
continuing. In this way each bacterium was modeled as an agent trying to get as close as possible
to the food source with the ability to swim forward or stop and rotate.

This lab report will first outline my implementation of the multi-agent bacteria model. It
will then analyze the behavior of the bacteria for both food density field functions and examine
how varying the bacteria’s speed affects their behavior. This report will describe the
implementation and behavior of another bacteria model, featuring bacteria who measure the
center of mass of those around them and move towards it. Finally, this report will sketch possible
methods for parallelizing the previous models.

Pa

My implementation

To implement the above outlined model, 1 used a continuous space.! Each bacterium was
represented by a body endowed with position coordinates and a velocity vector. To model their
motion, | ensured the velocity vector always has a length of ‘v’ for some chosen input velocity
by normalizing the vector and multiplying by v each time it was changed. The bacteria moved in
discrete time, with position and velocity vectors updated over 0.2 second intervals. This
formulation bore many similarities to the galaxy model from the previous lab, only this time
bodies lacked inherent mass.

Calculating the food density fields in this model was very straightforward as norms are
easily found so the equations presented in the introduction could be represented exactly in the
system.

To give the bodies agency | allowed them to calculate their previous position in space. By
subtracting the timestep multiplied by their velocity vector from their current position they could
determine their location at the previous timestep and thus determine the past the value of P, the
food density. They would then compare this to their current P and the program would determine
whether each body was going to continue in the same direction or rotate using the corresponding
probability. The probability calculation was done using a weighted random choice between two
options, with the weights determined by the relationship between the past and present food
density. Their rotation was represented as a random choice of new velocity vector which could
point in any direction?.

The agent’s positions and velocities were updated in a non-simultaneous fashion,
however, since they do not interact with each other this did not affect the results.

The petri dish was modeled with cyclic boundary conditions. At every timestep, after the
agent’s velocity had been determined but before their position was updated, the system
calculated whether their new velocity would move them outside the dish in the current timestep.
If so, it would adjust their position accordingly to place them in the dish on the opposite side,
then update their position.

On the first timestep all agents were placed inside a small circle in the bottom left of the
petri dish and each given a random velocity direction.

Results

Before modeling the large scale behavior of the bacteria | tested the program on single
agents for both the P, and Py, methods of calculating the food density gradient. | used the starting

L1t was not until I had completed 95% of the programing that | realized perhaps this was meant to me modeled using
rectangular cells with the bacteria moving only in the cardinal directions. Alas, | now have an overcomplicated
method

2 This was achieved by calculating a random a and random b between -100 and 100, then normalizing the resulting
(a,b) vector, and multiplying it by the input velocity v.

condition of v=20 um/s, with the timestep at 0.2s. Figure 1 shows three example paths for the
bacteria in each case.

Bacteria path for p_a Bacteria path for p_a
0 1a p X 100 - R "“Bactena path for p_a
s X L)
80 80 &
2%se
o, o o ¥ W
60 PN 60 o TR 60
e, R
R R ™
RE T P e M {5
40 ._-'-.:;-.t 40 & 40
s "
o™ g
2 : 0] § »
e
0 0 04+—= 22y

Bacteria path for p_b

™ Y
& o i

40 @ N @

...... B . e LY '._.. .

2 P 4 20 A x
o o " PO 1 % o .

0 r v Tt . 0 0 2 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100

o hertipessethesegyec

In each case the bacteria starts on the bottom left hand side and moves from there.

We observe that in all three P, cases the bacteria are drawn towards, and eventually find,
the center, despite starting with three completely different velocities. We also observe that in this
formulation, the bacteria have no way of stopping or slowing down once they have reached the
center of the food gradient. Coupled with the randomness of the velocity direction each time they
rotate, this results in an orbit-like behavior where they wander around the center, sometimes
straying quite far away before returning. In the middle and right most cases the bacteria achieve
very close proximity to the food source before wandering 30 or more um away. This behavior
will become important later.

The Py cases are not as successful. Because of the on/off nature of the food gradient the
bacteria cannot effectively navigate. Outside the central circle of radius 15 um they are
completely lost, walking and rotating totally randomly. In the middle case of figure 1 the bacteria
never even reaches the center. However, even when they do stumble across the center, they have
a constant 90% probability of walking straight until they leave again, as happens to both the left
and right cases. This creates a sort of paradox where, outside the food they change direction
often, making it take longer to move long distances, while inside the food circle they rarely
change direction, making them walk out of it as fast as possible! The Py case effectively keeps
the bacteria out of the food source.

With this understanding of the behavior, we can now model a system with 100 bacteria to
observe large-scale effects. To see how effective the bacteria are at reaching the center for each
food source gradient, | checked at the 1,10,100 and 1000'" timestep how many bacteria were
within 15um of the center. Figure 2 shows an example of the results for the P method.

Figure 2

Number of bacteria within 15 units vs iteration Number of bacteria within 15 units vs iteration

30 30

N
w

25 1

(]
o

20

15

=
o

Number of Bacteria
&

10

wn

54

’ 0 |:£I'Oatlon numesgr 0 e = 1 10 100 1000

Looking just as the graphs in figure 2, we see that only a few bacteria make it to the food
source within the first ten timesteps. After 100 timesteps more than 25 have made it, and by 1000
timesteps over 30, or 1/3 of the bacteria have made it. However, this does not tell the whole
story. As we determined above, a bacterium can come very close to the center before wandering
away again. This means the bacteria who made it in the first 10 timesteps, could have left and
come many times, and may not have been there at the 100 or 1000™ timestep. Thus, the 100 and
1000" timesteps, which are very similar in number of bacteria, represent more of an average
number of bacteria within 15 um for these parameters over long durations. To further illustrate
this, figure 3 shows a graph the number of bacteria within 15 um every tenth timestep for 100
timesteps.

Figure 3

Number of bacteria within 15 units vs iteration

Number of Bacteria
8 8

—
o

0 2 lfb i s:e 8 100

Here we see that after the bacteria have left their starting place and found the center (the
initial sharp increase) , they all begin to wander/orbit around it, resulting in a number of bacteria
within 15 um of the center which behaves like a random number generator oscillating around a
central average of about 27. Considering the semi random nature of their behavior, this result is
logical. Thus, for our starting parameters, we see an emergent behavior which results in an
average of 27 bacteria within 15 um of the food source. It is then interesting to ask if this can be
improved.

For more timesteps we will get the same result. Since the bacteria don’t interact, adding
more won'’t affect the outcome either.® To encourage them to stay closer to the center, | reduced
their speed by half to 10um/s, then by half again. The results are shown in figure 4:

Figure 4

Number of bacteria within 15 units vs iteration Number of bacterna within 15 units vs iteration

100

~
o

80

60

8 8 8 8

40

Number of Bacteria
Number of Bacteria

[~
o

20

[
o

0

(=]

0 20 40 60 80 100

0 20 40 60 80 100 Iteration number

Iteration number

The left side bacteria had velocity ¥ of the original group, while the right had ¥.. As we can see,
this reduction in velocity drastically increases the bacteria’s efficiency at staying close to the
center. The reduction by half of the speed doubles the average number of bacteria to almost 60,
and the reducing in half again brings the average to almost 90. Based on our observations of the
bacteria’s behavior this follows, since is becomes less likely that the bacteria will wander far
from the center once they have reached it as their speed decreases. Also logical is the fact that we
see it taking longer of the bacteria to reach the center, on the right side it takes them twice as
much time as the left.

We can also observe the behavior of the bacteria in the Py, gradient. Figure 5 shows the
same data as was collected for figure 2:

Figure 5
Number of bacteria within 15 units vs iteration Number of bacteria within 15 units vs iteration
* 7
6 6
25
17 5
g
E-
“ 4
g3
E 3
22
2
1
0 1
0 200 400 600 800 1000 0
Iteration number 1 10 100 1000

For the Py, food gradient we see that after the first ten timesteps, some bacteria have managed to
stumble into the center, but the number of bacteria in the center does not increase singificantly

over the rest of the timesteps. In fact, it is interesting to note that a circle of radius 15um makes
up around 7.1% of the area of the 100um*100um petri dish, meaning if you spread the bacteria

3] tested this using 300 bacteria and the result matched exactly the proportions of 100.

out randomly over the whole dish, there would, on average be more of them in the center circle
than there where using this food gradient method after 100 and 1000 timesteps. With this food
gradient our bacteria are no more effective at finding the center than a random distribution.

Having analyzed the behavior of the bacteria for these to methods of motion, we now turn
to different model for bacteria movement.

Center of Mass experiment

We now turn our attention to a different model. In this case, each bacterium calculates the
‘center of mass’ of the surrounding bacteria which are within 10um of its position. It then creates
a normalized vector d which points towards this center of mass and updates its own velocity
using this equation

v(t+ 1) = v(t) + v*a*t*d
where a is a constant (in this case equal to 0.1) v is the input velocity and t is the timestep. In this
way the bacteria will tend towards the center of mass of its neighbors.

To implement this, | used two for-loops, one to loop over all the bacteria, the second to
loop over all the bacteria within 10um of the target from the first loop. | calculated the normal
vector to the center of mass of the resulting bodies and calculated a correction using the above
equation.

Since all the bodies are interacting with each other, the velocities and positions in this
model needed to be updated simultaneously. To achieve this, | saved all the initial velocities of
the particles as temporary arrays, then calculated the corresponding correction, and saved the
sum of those two in an ordered list. Thus, once the calculation was complete, | could update the
particle velocities with the pre-calculated list and update their positions accordingly. Cyclic
boundary conditions were achieved the same as before, and all the starting conditions were
maintained.

With the model functioning I could now model the behavior of 100 particles. Figure 6
shows snapshots of the resulting particle positions at the timesteps 1,10,100 and 200.

Figure 6

100 100 . o0 - 100

T

o |t 0 0 : 0
20 40 60 80 100 0 0 40 60 80 100 0 20 40 B0 80 100 20 40 60 80 100

As we can see the bacteria begin by spreading outwards in clumps, with the first thee evolutions
showing the formation and motion of larger structures. However, the fourth frame shows a
dissolution of those structures in favor of an even distribution. This unexpected behavior is

perhaps the result of a combination of the bacteria growing too far apart to interact, or of clump
formation resulting in them passing through the groups and ‘shooting’ out of the sides in their
attempt to reach the strong center of mass, like gravitation slingshoting.

What more interesting is, when we invert the sign of alpha, we find the same behavior
over larger timescales. As the bacteria are repelled from one another they spread into an diffuse
even distribution, and by the 200" timestep are indistinguishable in behavior from the bacteria
which are attracted to one another.

Parallelization

If we wished to parallelize the calculations for the above programs, we would want to
instruct python to perform simultaneous calculations for the velocity and positions updates of the
agents. We would want to calculate their decisions at the same time, rather than in order.

Conclusion

In this lab we first outlined my implementation of the multi-agent bacteria model and
analyzed the behavior of the bacteria for the P, and Py, food density field functions. We then
examined how varying the bacteria’s speed affects their behavior. This report also described the
implementation and behavior of another bacteria model, featuring bacteria who measure the
center of mass of those around them and move towards it. Finally, this report sketched possible
methods for parallelizing the previous models.

